

[Arora, 6(1): January 2019] ISSN 2348 – 8034
DOI: 10.5281/zenodo.2548927 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

158

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

EFFICIENTLY DATA MANAGEMENT USING MODIFIED B-TREE ALGORITHM
Nitin Arora

1
, Satyam Gupta

2
, Satyam Sareen

3
, Shahzeb Rizvi

4
 & Alaknanda Ashok

5

1,2,3,4School of Computer Science
1Department of Informatics

2,3,4 Department of Cloud Computing & Virtualization
1,2,3,4University of Petroleum and Energy Studies

5Department of Electrical Engineering
5G. B. Pant University of Agriculture and Technology, Pant Nagar

ABSTRACT
Main memory and secondary memory are different types of memory resources, as both of them have different

properties and characteristics. It is often hard to load a large size of datasets into the main memory due to its cost

and secondary memory can hold a large amount of data but the access time is comparatively slower than main

memory. That’s why datasets reside in secondary storage HDDs, Magnetic tapes, etc. To process such size of

datasets, a required part of datasets is retrieved from secondary storage and is placed in the internal memory for
processing with the help of data-structures like B-trees and B+ trees andother variants of B-trees. For a large dataset

in primary memory CPU processing time and number of disk access time are important.In processing of B-tree,

number of disk access depends on height of B-tree which is O(logblocksize/2 n), so no change can be done in the

number of the disk access. In this paper we would use an efficient algorithm to modify CPU processing time from

O(n)to O(log n).

Keywords: B- Tree, B+ Tree, Data Management, Primary memory, secondary memory.

I. INTRODUCTION

B-trees[1] and B+ trees[2] are disk based data structures that are stored and accessed from disk. The processing

however is done in memory. If a change is done in it is immediately written on the disk. They are used in the

implementation of databases like spatial databases. As the datasets are increasing in size it is getting habitual to use

disk based data structures instead of placing whole dataset in main memory.

Main memory and secondary memory have different properties like, access time on main memory is faster than
secondary memory and main memory is more costly so large datasets can be impractical to load. Data structures that

are efficient on main memory may not work as same on secondary memory.

The data flow in disk based data structure is that the data is first fetched from the disk and then put into the memory

to process, after processing the disk write operation is used to update the disk. Many data structures can be used to

hold the processing in memory like, array, linked list, binary trees, B-trees and B+ trees. B-trees use nodes that are

transferred to memory for processing.

In real- world, data is increasing due to exponential increase of structured and unstructured data. It is becoming

impractical to process that amount of data as a data structure on the main memory. Efficient data structures like

array, linked list, binary tree, B-trees and B+ trees are proposed but all of these have their pros and cons. Main
memory is fast but less in comparison to secondary memory. So, secondary memory is used to store the datasets. So

with increasing data, better retrieval speeds are also required. For that efficient algorithms are being created which

focus to decrease the processing time, disk accesses.

[Arora, 6(1): January 2019] ISSN 2348 – 8034
DOI: 10.5281/zenodo.2548927 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

159

In disk based data structures processing, storing and accessing are the three time complexity defining factors [4]. In

this paper, the proposed structure and algorithm for the implementation of B-tree will focus to reduce the CPU
processing time.

II. LITERATURE REVIEW

B-trees is mostly used as a standard in disk-based data structure as it is efficient and can have variants to improve

the data handling process. Douglas Comer, in “The Ubiquitous B-tree” [1] published that why B-trees are so

successful by mentioning its operations insertion, balancing, deletion and splitting. He wrote about various variants

of B-trees i.e. B*trees and B+ trees and their properties. Virtual B-tree was an idea discussed in this paper which

uses the concept of paging and addressing.Jan Jannik, in “Implementation and deletion in B+ trees” [2] proposed
that an algorithm for implementation of B+ trees with the help of C programming libraries. In his paper he wrote

that “deletion, due to its greater complexity and perceived lesser importance” and proposed algorithm for better

deletion operation in B+ trees.In “Introduction to Algorithms”, by Thomas H. Cormen et al. [3] mentioned that the

node size of the B-tree in secondary storage is depends on the page size. The page size is the size of unit data that is

transferred from secondary storage to main memory.

III. METHODOLOGY

This paper proposed a modified structure of a node in a B-tree which is as follows:
struct node

 { int value;

Int nextindex;

 long pointer*c; //c may be null pointer or disk pointer

}pds[blocksize];

Value Index to next node Child Pointer

Figure1: Representation of a Node in B- Tree

The structure contains an array of nodes. Each node consists an integer value to store the data. Pointer to the child

node and next Index, will hold the index of the next node in the same pds. The field nextIndex is taken as an integer

to save space.

3.1 Proposed algorithm for searching an item:

Instead of linear search in original algorithm, proposed algorithm is performed binary search on nodes array as

follow:

[Arora, 6(1): January 2019] ISSN 2348 – 8034
DOI: 10.5281/zenodo.2548927 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

160

Step1: Fetch the nodes array i.e pds from secondary storage
 Disk_read(pds)

Binary_search_node(pds,item)

Step2: Intialise variables lower_bound(lb),upper_bound (ub), location(loc), middle (mid)
lb->1 ub->n[pds] loc->1 mid=(lb+ub)/2

Step3: Compare the value of middle node element with “item” and proceed accordingly

 If (pds[mid].value==item)
 loc->mid

 return (loc)

 else

 If (pds[mid].value>item)
 ub->mid-1

 lb->mid+1

Step4: Iterate till lb==ub
 if (lb==ub) loclb

Step5: read the child node from secondary memory

 If (leaf(pds))

 Return -1;
 Else

 If(pds[loc].value>item)

 pds=Disk_read(pds[loc-1].c)
 else pds=Disk_read(pds[loc].c)

 call the function recursively

Step6: END

[Arora, 6(1): January 2019] ISSN 2348 – 8034
DOI: 10.5281/zenodo.2548927 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

161

3.2 Proposed Algorithm for Inserting an Item

In this algorithm we are first doing binary search to reach the leaf node where we have to insert the item. If the leaf
node is already filled, then we would split the node into 2 and send the median value to the parent. We will repeat

this process until all nodes are completely filled or less than block size. Our algorithm does not require shifting of

values as we are storing them with the help of the variable “nextIndex”.

INSERT: 3,26,4,25,5,23,8,18,10,17,11,16,12,15,14

Step1: Fetch the nodes array(root) i.e pds from secondary storage

 pds=Disk_read(pds)

Step2: Intialise variables lower_bound(lb), upper_bound(ub) and location(loc)
step3: initialize variable mid

 mid=(lb+ub)/2

Step4: Compare the value of middle node element with “item” and proceed

accordingly

 If (pds[mid].value==item)

 loc->mid
 else

 If (pds[mid].value>item)

 ub->mid-1

 lb->mid+1

Step5: Iterate till lb==ub

 if (lb==ub) loclb

Step6: check type of node and insert accordingly
 If leaf(pds)

 If node is full, Split the node

 Else Insert accordingly

 Else
 Read the child node from secondary memory

 If(pds[loc].value>item)

 pds=Disk_read(pds[loc -1].c)
 else pds=Disk_read(pds[loc].c)

 call the function recursively

B-tree_insert(pds,item)

Step7: END

[Arora, 6(1): January 2019] ISSN 2348 – 8034
DOI: 10.5281/zenodo.2548927 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

162

3.3 Proposed Algorithm for Splitting a Node:

In the proposed algorithm, the child node would be split in to 2 parts. The median value of the node will be sent to

the parent node. We pass 3 arguments, node which we want to split, its parent node and location in the parent node

where value should be placed.

3.4 Algorithm Analysis

There are 3 ways calculating recursion:

 Substitution Method

 Recursive tree method

 Master Method

Complexity calculation using Master Method:

T(n) = aT(n/b) + f(n) where a >= 1 and b > 1

There are following three cases:

1. If f(n) = Θ(nc) where c < Logba then T(n) = Θ(nLog
ba)

[Arora, 6(1): January 2019] ISSN 2348 – 8034
DOI: 10.5281/zenodo.2548927 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

163

2. If f(n) = Θ(nc) where c = Logba then T(n) = Θ(ncLog n)

3.If f(n) = Θ(nc) where c > Logba then T(n) = Θ(f(n))

Binary Search – T(n) = T(n/2) + O(1)

a = 1, b = 2, k = 0 and p = 0

bk = 1. So, a = bk and p > -1 [Case 2.(a)]

T(n) = θ(nlog
ba logp+1n)

T(n) = θ(logn)

Table 1: Time complexity of searching and inserting a key in proposed algorithm and general B-Tree algorithm

Data Structure used SEARCHING OPERATION INSERTION OPERATION

B-TREE Θ(nlogn) Θ(n2logn)

PROPOSED DATA

STRUCTURE

Θ(logn*logn) Θ(logn*logn)

SEARCHING COMPLEXITY: Θ(logn*logn); as the time complexity for the traversal of tree is Θ(logn) and time

complexity of doing binary search in a node is also Θ(logn), therefore total time complexity is Θ(logn*logn).

INSERTION COMPLEXITY: Θ(logn*logn); insertion complexity would be multiplied with the searching
complexity calculated above. Our insertion part would have a time complexity of 1 because we are inserting at the

last position while updating 2 fields of proposed structure i.e NextIndex.

IV. CONCLUSION

This paper provided an efficient algorithm for management of data using B-trees thus giving us reduced time

complexity and less number of CPU cycles. This algorithm can be applied to a wide variety of systems such as

managing of VM images in cloud, local PC storage, inventory management system.

REFERENCES
1. Comer D., “The Ubiquitous B-tree”, ACM Computer Survey, Vol. 11, No. 2, pp. 121-137, June 1979.

2. Jannink J., “Implementing deletion in B+-trees”, Proc. ACM SIGMOD Int. Conf. Manag. Data, vol. 24,

no. 1, pp.33–38, 1995.

3. Thomas H. Cormen et.al “Introduction to Algorithms”, Third Edition 2009 pp. 486-488.

4. Arora, N., Tamta, V. K., and Kumar, S. 2012. Modified Non-Recursive Algorithm for Reconstructing a
Binary Tree. International Journal of Computer Applications. Vol 43. No 10. 25-28

	II. LITERATURE REVIEW
	III. METHODOLOGY
	3.1 Proposed algorithm for searching an item:
	3.2 Proposed Algorithm for Inserting an Item
	IV. CONCLUSION

